Unified formulation of geometrically nonlinear refined beam theories

نویسندگان

  • A. Pagani
  • E. Carrera
چکیده

By using the Carrera Unified Formulation (CUF) and a total Lagrangian approach, the unified theory of beams including geometrical nonlinearities is introduced in this paper. According to CUF, kinematics of one-dimensional structures are formulated by employing an index notation and a generalized expansion of the primary variables by arbitrary cross-section functions. Namely, in this work, lowto higher-order beam models with only pure displacement variables are implemented by utilizing Lagrange polynomials expansions of the unknowns on the cross-section. The principle of virtual work and a finite element approximation are used to formulate the governing equations, whereas a Newton-Raphson linearization scheme along with a path-following method based on the arc-length constraint is employed to solve the geometrically nonlinear problem. By using CUF and three-dimensional GreenLagrange strain components, the explicit forms of the secant and tangent stiffness matrices of the unified beam element are provided in terms of fundamental nuclei, which are invariants of the theory approximation order. A symmetric form of the secant matrix is provided as well by exploiting the linearization of the geometric stiffness terms. Various numerical assessments are proposed, including large deflection analysis, buckling and post-buckling of slender solid cross-section beams. Thin-walled structures are also analysed in order to show the enhanced capabilities of the present formulation. Whenever possible, the results are compared to those from the literature and finite element commercial software tools.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometrically nonlinear analysis of axially functionally graded beams by using finite element method

The aim of this paper is to investigate geometrically nonlinear static analysis of axially functionally graded cantilever beam subjected to transversal non follower load. The considered problem is solved by finite element method with total Lagrangian kinematic approach. The material properties of the beam vary along the longitudinal direction according to the power law function. The finite elem...

متن کامل

On Bending Response of Doubly Curved Laminated Composite Shells Using Hybrid Refined Models

This paper presents a static analysis of laminated composite doubly-curved shells using refined kinematic models with polynomial and non-polynomial functions recently introduced in the literature. To be specific, Maclaurin, trigonometric, exponential and zig-zag functions are employed. The employed refined models are based on the equivalent single layer theories. A simply supported shell is sub...

متن کامل

Size-dependent Bending of Geometrically Nonlinear of Micro-Laminated Composite Beam based on Modified Couple Stress Theory

In this study, the effect of finite strain on bending of the geometrically nonlinear of micro laminated composite Euler-Bernoulli beam based on Modified Couple Stress Theory (MCST) is studied in thermal environment. The Green-Lagrange strain tensor according to finite strain assumption and the principle of minimum potential energy is applied to obtain governing equation of motion and boundary c...

متن کامل

On the Geometrically Nonlinear Analysis of Composite Axisymmetric Shells

Composite axisymmetric shells have numerous applications; many researchers have taken advantage of the general shell element or the semi-analytical formulation to analyze these structures. The present study is devoted to the nonlinear analysis of composite axisymmetric shells by using a 1D three nodded axisymmetric shell element. Both low and higher-order shear deformations are included in the ...

متن کامل

Non Uniform Rational B Spline (NURBS) Based Non-Linear Analysis of Straight Beams with Mixed Formulations

Displacement finite element models of various beam theories have been developed traditionally using conventional finite element basis functions (i.e., cubic Hermite, equi-spaced Lagrange interpolation functions, or spectral/hp Legendre functions). Various finite element models of beams differ from each other in the choice of the interpolation functions used for the transverse deflection w, tota...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017